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Owing to plastic's durability, plastic waste management is challenging. The current issue is that millions of tonnes of plastic 
end up in the ocean, possibly resulting in microplastic pollution and becoming the most prevalent underwater contaminant. 
Efficient identification of microplastic pollution is a scientific challenge because as the size of the particles decreases, it 
becomes more difficult to recognize and detect them. In this work, we demonstrate a deep learning-based approach for 
microplastics identification. The dataset is acquired using the thermal imaging technique. Data collection is followed by a data 
pre-processing step and finally, a classification step. The reported best accuracy, 97.42%, is achieved using the CNN model. 
The proposed approach allows for the deployment of increasingly diversified models as deep-learning models are still 
progressing. 
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1. Introduction 
 

Plastic production had exponential growth, and over 

the past half-century, it skyrocketed to 311 megatonnes in 

2014 from merely 15 megatonnes in 1964. This trend is 

anticipated to continue doubling over the next twenty-year 

period as the use of plastic is expanding in many 

applications. On the other end the AI and deep learning 

concepts have been used for many applications [1,2]. As 

one of the greatest threats to humanity, plastic pollution is 

now pervasive and found in the air, on land, and in the ocean. 

Most plastic debris eventually find its way into the ocean 

through lakes and rivers, where it can linger for years [3].  

According to statistics, 12 million tonnes of plastic 

litter enters the ocean yearly, and the UN alludes to this as 

a "planetary crisis." And lately, the emphasis on 

microplastic as a potential pollutant has risen globally, 

leading to this new scope of research. Microplastics are 

defined as synthetic solid particles of size spanning between 

1 μm and 5 mm with regular or irregular shapes. Its 

manufacturing origin can be either primary or secondary. 

Microbeads in personal care items and cosmetics are an 

example of primary microplastics that are made 

intentionally by humans. Decomposition of larger plastic 

materials like tires, bags, and other items due to various 

environmental causes, results in secondary microplastics 

[4-6]. 

To establish the groundwork for a deeper 

comprehension of distribution, abundance, and risks 

associated with microplastics, a bibliometric analysis was 

carried out based on 1138 related articles on the Web of 

Science. It reports that the chemical makeup of 

microplastics and the contaminants that adhere to them can 

cause negative impacts on marine species like reducing 

food intake, inhibiting growth and reproduction, and 

disrupting physiological processes (e.g., cell division, 

hormone secretion, immunity) that might lead to starvation 

and death. Thus, microplastics have the potential for 

bioaccumulation and biomagnification [7,8]. 

Microplastics in water behave differently based on 

their density. Dense microplastics sink and cluster near the 

source, while lighter microplastics float and get carried 

away. However, the net buoyancy can be impacted by a few 

processes (such as biofilms, gas bubbles, and ageing), 

causing microplastics to settle in the sediments [9].  

The efficient identification and quantification of 

microplastic pollution is a scientific hurdle since it gets 

harder to distinguish and identify smaller particles. Most of 

the research focuses on the in-situ detection of microplastics 

in the air, while only a few focus on the challenging water 

environment, due to constraints like light absorption and 

scattering. Many techniques are explored and investigated 

for microplastic detection. Recently, optoelectronic 

techniques were used for the plastics identification and 

water quality parameters estimation [10-12]. But currently, 

there are hardly a few quick, standardized, and 

straightforward analytical techniques that can reliably 

identify microplastics in actual water in various 

environmental matrices outside of laboratories.  

Given these antecedents, the goal of this research is to 

design a detailed algorithm that can recognize and classify 

the lighter microplastics that float at the surface level. More 
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specifically, the idea put forth here intends to leverage 

computer vision and deep learning methods to accelerate 

the classification of microplastics at surface water. The 

paper's findings can be summed up as: Identification of 

microplastics using thermal imaging technique and 

assessing suitable deep-learning algorithms. 

 

2. Related work 
 

 

There is no one standard solution to identify 

microplastics, and visual inspection is almost always the 

most common method for identifying and quantifying 

microplastics, even if tracked by chemical analysis. In 

visual inspection, particles are categorized as plastic based 

on physical characteristics, either directly observed or 

observed under a stereoscope or microscope. In these 

methods, microplastics must be isolated and treated 

individually from samples such as water, sediment, or 

organisms. Thus, the identification phase requires a time-

consuming measure of highly competent researchers [13]. 

According to the literature, spectroscopic methods like 

Fourier transforms infrared (FTIR) and Raman 

spectroscopy are used most frequently to identify 

microplastics [14, 15]. These techniques are fast and 

reliable for identifying and distinguishing various 

microplastic types. While non-destructive, the sample 

preparation involving microplastic extraction from the 

environment may be potentially detrimental to the sample 

due to the physical detachment from the backdrop. 

Other analytical techniques, such as scanning electron 

microscopy (SEM), scanning electron microscopy–energy 

dispersive X-ray spectroscopy (SEM-EDS), and 

environmental scanning electron microscopy-energy 

dispersive X-ray spectroscopy (ESEM-EDS) have also 

been used to characterize microplastics [11]. However, 

these techniques can be time-consuming, expensive, and 

potentially detrimental to the sample during sample 

preparation. 

Thermal analysis is an alternative approach gaining 

popularity for microplastic identification. It involves 

identifying the polymer based on its degradation products. 

This methodology includes various techniques such as 

thermogravimetry (TGA), TGA coupled with mass 

spectrometry (TGA-MS), TGA-thermal desorption-gas 

chromatography-mass spectrometry (TGA-TD-GC-MS), 

pyrolysis gas chromatography-mass spectrometry (py-GC-

MS), and differential scanning calorimetry (DSC). These 

thermal analysis techniques equip beneficial insights into 

microplastic composition and properties. But they are 

destructive and may have limitations in sensitivity, 

accessibility, and practicality [16]. 

Given the limitations of these techniques, there is a 

great need for a new approach to facilitate easy and efficient 

identification of microplastics. Also, as anticipated in the 

introduction, microplastic detection at the water surface is 

challenging. Thus, this paper suggests using thermal 

imaging in association with deep learning algorithms to 

detect microplastics at the water surface. Thermal imaging 

is a non-destructive testing method that allows for rapid and 

efficient screening of various materials and environments, 

including soil, water, and sediment. To date, the literature 

in this field is limited, with only one published study 

investigating the efficacy of active infrared imaging-based 

technologies for microplastic detection in sand particles. 

This pioneering research proposes active thermography as 

a potential pre-detection method to identify microplastic 

contamination [17].  

In this paper, the prospect of thermal imaging to detect 

microplastics at the water surface is explored. Also, the 

combination of deep learning algorithms to accelerate the 

identification process is researched. The strengths and 

limitations of this proposed method are discussed. 

 
3. Materials and methods 
 
3.1. Data collection 

 

3.1.1. Thermal camera 

 

Contemplating active thermography as a promising 

non-destructive testing strategy for microplastic detection, 

PTi120 Pocket Thermal Imager is utilized to acquire the 

required dataset. PTi120 Pocket Thermal Imager is a 

versatile, reliable handheld device used to capture thermal 

images of samples in situ without the need for complex 

sample preparation or equipment. With an infrared 

resolution of 120 x 90 and a temperature range of -20 to 

400°C, this thermal imager equips straightforward 

troubleshooting and quickly inspects the temperature of the 

target.  

 

3.1.2. Experimental setup 

 

Before data collection, the thermal imager is set up by 

adjusting the focus, emissivity, and other settings to ensure 

precise and consistent findings. The environment is 

considered to be devoid of hindrances that can tamper with 

temperature readings. Ambient temperature is managed by 

removing any objects that may reflect or emit heat, ensuring 

that there is no direct sunlight or other sources of heat, and 

minimizing air currents that may influence the temperature 

of the target. Fig. 1 depicts the experimental setup. 
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Fig. 1. Experimental setup (colour online) 

 

3.1.3. Particles tested 

 

In this experiment, the aim is to identify the lighter 

microplastics that float on the water surface and get carried 

away easily from the source. Thus, Low-density 

Polyethylene (LDPE), one of the most prominent plastic 

contaminants observed in water, was chosen as the 

detection sample. LDPE is extensively utilized in everyday 

products like disposable bottles, plastic bags, and food 

packaging, all of which can wind up in the water bodies 

when discarded inappropriately. The sample consists of 

microplastic particles of granular shape and sizes ranging 

from 2 to 3 mm.  

 

3.1.4. Dataset 

 

The dataset consists of images of diverse combinations 

of water, soil, and microplastics at different ratios, as this 

technique is sensitive to the concentrations of microplastics. 

In order to imitate the in-situ surface water backdrop, these 

combinations are taken into account. For comprehensive 

data collection, images are captured at multiple angles and 

distances from the samples at room temperature. The 

sample dataset is given in Fig. 2. 

 

 

 
 

Fig. 2. Sample dataset (colour online) 
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3.2. Data pre-processing 

 

Enhancement and normalization techniques may alter 

the pixel values and distribution in the image, causing 

distortion of certain features. Thus, a pre-processing 

pipeline is designed, taking into account the trade-offs of 

potential information loss and feature enhancement. Firstly, 

it is ensured that all images are in the same format and 

resolution to keep consistency. Then, the dataset was 

annotated with labels denoting the types of images, such as 

"microplastic" and "non-microplastic." This step makes it 

easier to train deep-learning models to identify 

microplastics. 

Data augmentation was performed to expand the 

dataset size and lessen over-fitting when training a deep-

learning model. By rotating each image at different angles 

clockwise, the final dataset was augmented five-fold to 

2000 images equally split into the following categories: 

microplastic and non-microplastic. It is ensured that the 

dataset has a balanced representation of each class to avoid 

biases during training. Later, the dataset is divided by 7:2:1 

to create a training, validation, and testing dataset. To assure 

the even-handedness of the test, the images in the testing 

dataset do not occur in training or validation. 

 

3.3. Image classification 
 

Machine learning composes a subset called "Deep 

learning" that strives to prepare neural networks to 

comprehend intricate data structures. Here, neural networks 

are crafted of numerous layers of interconnected nodes that 

understand to extract beneficial features from the input data 

through forward and backward propagation. Lately, deep 

learning has revolutionized the domain of image 

classification to open up a new scope of research. Deep 

Neural Networks (DNN) and Convolutional Neural 

Networks (CNN) are the two deep learning algorithms 

considered for this experimentation. By training these 

algorithms with our dataset, we aim to gain insights into the 

performance of each model in comparison to one another. 

Deep Neural Networks (DNN) are general-purpose 

artificial neural networks. It incorporates numerous hidden 

layers between the input and output layers, trained using 

backpropagation to minimize the disparity between the 

actual and the predicted output. [2]. Convolutional Neural 

Networks (CNN) are specifically designed to capture 

spatial information in images. They use convolutional 

layers that detect local patterns and features in images, 

making them notably effective for image classification [18]. 

Thus, CNN is considered a good choice for this use case. 

DNN can be trained on a smaller dataset and still achieve 

reasonable accuracy, which is advantageous in this 

application as data collection is limited or expensive. Also, 

the DNN model is considered a good choice as it surpasses 

the CNN model in terms of simplicity and computation 

time.  

 

3.3.1. Implementation of DNN model 

 

The model architecture is defined as a sequential model, 

starting with a Flatten layer of input shape (128,128,3) 

tracked by a Dense layer with 12 neurons and activation 

function "ReLU"; a Dropout layer with 0.4 probability rate 

to prevent overfitting, and again, a Dense layer with 10 

neurons and activation function "ReLU" and a Dense layer 

with two neurons and activation function "softmax" to 

output binary classification probabilities. The model is then 

compiled with Adam optimizer and binary cross-entropy 

loss with a 0.001 learning rate as they assist in consolidating 

an optimal solution with higher accuracy and efficiency.  

 

3.3.2. Implementation of CNN model 

 

The model architecture is devised by defining the 

sequence of each layer. The convolutional layer employs 32 

filters and 64 filters with a 3×3 kernel as a filter and a ReLU 

activation function. Then, a max pooling layer probes for 

the utmost value within a 2×2 matrix and is tracked by 

Flatten layer and 2 Dense layers with 14 neurons and the 

activation function "ReLU". The model ends with a Dense 

layer with two neurons for two classes, namely 

microplastics, and non-microplastics. The model is then 

compiled with Adam optimizer and binary cross-entropy 

loss with a 0.001 learning rate as they assist in consolidating 

an optimal solution with higher accuracy and efficiency. 

 

 

4. Results and discussion 
 

The models were implemented in Python Language in 

the system with configuration as Intel(R) Core (TM) i5-

10210U CPU, 64-bit OS, and 8 GB RAM. Keras, a Python 

library designed particularly for devising neural networks 

for machine learning models, is used with TensorFlow to 

train the neural network. The model is tested and evaluated 

based on the performance metrics like accuracy and 

precision. The models have been modified accordingly by 

improving the network design, randomizing the training 

dataset, and handling the overfitting and underfitting 

problems. In this two-class classification problem, the CNN 

model performs better than the DNN, with an accuracy of 

97.42%. The comparison of accuracy and precision metrics 

for the DNN and CNN model is given in Table 1. Fig. 3 

depicts the accuracy plot for both models. 
 

Table 1. Comparative analysis of model performance 

 
Model Accuracy Precision 

DNN 85.05 % 87.15 % 

CNN 97.42 % 87.19 % 
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Fig. 3. Accuracy plot (colour online) 

 

From the results, it is evident that thermal imaging has 

the potential to be a beneficial tool for detecting 

microplastics in surface water, considering its high 

sensitivity, non-destructive nature, high resolution, 

efficiency, and versatility. Thus, thermal imaging 

techniques in association with deep learning algorithms can 

produce quick and insightful results in microplastic 

detection, especially, the lighter microplastics that float at 

water’s surface.  

 

4.1. Discussions 

 

However, thermal imaging has size limitations and is 

incompetent to detect microplastics that are smaller than the 

resolution limit of the thermal camera. The size range 

depends on the specificities of the camera. Thus, as the size 

of the microplastics diminishes, they may go barely noticed 

using thermal imaging alone. Thermal imaging is 

unsuitable for distinguishing microplastic types based on 

attributes like shape, color, etc. Also, different types of 

microplastics may have similar thermal properties, making 

it difficult to distinguish them solely based on thermal 

imaging.  

Additionally, environmental factors such as ambient 

temperature, air movement, humidity, and the presence of 

other materials in the environment may produce false 

positives or interfere with the detection of microplastics. 

Thus, collaborating thermal imaging techniques with other 

complementary imaging techniques would improve the 

reliability of detection. Thermal imaging is predominantly 

reliable for surface-level detection only. It may not work 

well for finding microplastics embedded within sediments, 

soils, or other matrices, because the restricted penetration 

depth of thermal radiation bounds its utility in detecting 

microplastics in subsurface or opaque materials. 

Conducting exhaustive field studies to validate the efficacy 

of thermal imaging for microplastic detection is paramount. 

But, to develop an extensive dataset of exclusive images, it 

requires additional time and effort. Therefore, it is advisable 

to establish a collaborative dataset for future work.  

Continuous advancements in integrating thermal imaging 

technology with one or more complementary imaging 

techniques, such as spectroscopy, microscopy, or chemical 

analysis, can provide a more comprehensive analysis of 

microplastics.  

Also, incorporating the proposed work with automated 

systems can help to gather real-time data over extended 

periods, allowing for a sounder comprehension of 

microplastic distribution and trends. As deep-learning 

models are still advancing, increasingly diversified models 

can be employed using the proposed approach. In essence, 

computer vision methods play a vital role in this ever-

growing field by expediting the identification and 

classification of microplastics. 

 

 
5. Conclusion 
 

The objective is to offer researchers a tool to expedite 

the identification of microplastics at the surface level with 

better accuracy. Aiming to identify the lighter microplastics 

that float on the water surface and get carried away easily 

from the source, the microplastic sample chosen is Low-

density Polyethylene (LDPE). We have collected the 

dataset using the thermal imaging technique, taking into 

account the diverse combinations of water, soil, and 

microplastics. The study adopted a deep learning-based 

approach for image classification, and the reported best 

accuracy, 97.42%, is achieved using the CNN model. The 

proposed approach can help streamline the identification 

process of microplastics, benefiting both researchers and 

the environment. Also, considering the use case and 

possibilities, the project has a great future scope of work. 
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